
Stochastic Pruning

Robert L. Cook John Halstead
Pixar Animation Studios

Abstract

Many renderers perform poorly on scenes that contain a lot of de-
tailed geometry. Level-of-detail techniques can alleviate the load
on the renderer by creating simplified representations of primitives
that are small on the screen. Current methods work well when the
detail is due to the complexity of the individual elements, but not
when it is due to the large number of elements. In this paper, we in-
troduce a technique for automatically simplifying this latter type of
geometric complexity. Some elements are pruned (i.e., eliminated),
and the remaining elements are altered to preserve the statistical
properties of the scene.

CR Categories: I.3.3 [Picture/Image generation]: Antialiasing—
[I.3.7]: Three-Dimensional Graphics and Realism—Color, shad-
ing, shadowing, and texture

Keywords: Level of detail, procedural models, Monte Carlo.

1 Introduction

Geometry can overwhelm a renderer. Highly detailed scenes can
increase memory requirements and degrade performance, even to
the point of becoming unrenderable. Fortunately, the amount of de-
tail involved is typically too great to be represented at the resolution
of the rendered image. In such cases, renderer performance can be
greatly improved by substituting a less detailed version of the scene
without perceptibly changing the image. Varying the level of detail
processed by the renderer is crucial for efficient rendering of highly
complex scenes.

Creating these simplified representations manually [Crow 1982]
can be prohibitively labor-intensive, so good automatic simplifica-
tion techniques are important. Much of the research in this area has
focused on simplifying complex surfaces (e.g., [Cohen et al. 1996]
and [Lounsbery et al. 1997]), but these methods do not address one
of the most important sources of geometric detail: complexity due
to large numbers of simple, disconnected elements. For example,
we recently had a landscape filled with plants like the one in Fig-
ure 1 stretching from the near distance to the far horizon. The scene
contained over a hundred million leaves and was unrenderable with
RenderMan. Surface simplification techniques won’t help in this
situation since the elements are already very simple.

Some existing methods can simplify this type of complexity, but
they have serious limitations. For some procedural models, the
number of elements generated can be adjusted based on screen
size (e.g., [Reeves 1983] and [Smith 1984]). This close coupling
of level of detail with model generation tends to further compli-
cate already intricate algorithms and does not help with expensive

Figure 1: A plant with 320,000 leaves.

(a) (b) (c) (d)
Figure 2: Distant views of the plant from Figure 1 with close-ups
below: (a) unpruned, (b) with 90% of its leaves pruned, (c) with
area correction, (d) with area and contrast correction.

models that are pre-computed because they are expensive to gen-
erate (e.g., [Prusinkiewicz et al. 1994]). Image-based, 2-D approx-
imations such as impostors and textured depth meshes are view-
dependent (see [Wilson and Manocha 2003] for a good survey and
analysis), and using 3-D volumetric representations (e.g., [Andujar
et al. 2002]) can significantly degrade the appearance of the object.

2 The Algorithm

In this paper, we introduce stochastic pruning, a Monte Carlo tech-
nique for automatically simplifying objects made of a large number
of geometric elements. When there are a large number of elements
in a pixel, we estimate the color of the pixel from a subset of the el-
ements. The unused elements are pruned, and the rest are altered to
preserve the appearance of the object. The method is easy to imple-
ment and fit into a rendering pipeline, and it lets us render scenes of
very high geometric complexity without sacrificing image quality.

There are 4 guiding principles needed to make this approach work;
we discuss each of these below.

1. Pruning order. Deciding which elements to prune.
2. Area preservation. Altering the size of the remaining ele-

ments so the total area of the object does not change.
3. Contrast preservation. Altering the shading of the remain-

ing elements so the contrast of image does not change.
4. Smooth animation. Making pruned elements fade out in-

stead of pop off.

Figure 3: u as a function of z at different pruning rates.

2.1 Pruning Order

The farther away an object is, the smaller it is on the screen, the
more elements there are per pixel, and the more we can prune. We
need to determine u, the fraction of the elements that are unpruned,
as a function of z, the distance from the camera. There are many
ways this could be done. Since the number of elements per pixel is
proportional to z−2, we chose to use a similar formula for u:

u = z−logh2 (1)

where h is the distance at which half the elements are pruned; this
controls how aggressively elements are pruned as they get smaller
(see Figure 3). Note that for simplicity we have scaled z so that
z = 1 where pruning begins; this should be where the shapes of
individual elements are no longer discernible, usually when they
are about the size of a pixel. As a result, this z scaling will depend
on the image resolution.

For animation, the elements must be pruned in a consistent order.
This pruning order should not be correlated with geometric posi-
tion, size, orientation, color, or other characteristics (e.g., pruning
elements from left to right would be objectionable). Some objects
are constructed in such a way that the pruning order can be deter-
mined procedurally, but we have found it more general and useful to
determine the pruning order stochastically. A simple technique is to
assign a random number to each element, then sort the elements by
their random numbers. This is usually sufficient in practice, but us-
ing stratified sampling ([Cook 1986], [Mitchell 1987]) assures that
elements close to each other geometrically are not close to each
other in the pruning order. This spreads out the visual effects of
pruning during animation and allows more aggressive pruning.

When n, the number of elements in the object, is large, the time
spent doing even trivial rejects can be significant, so we need for
the pruned elements to not even be considered. This can be done
by storing the elements in a file in reverse pruning order so that
only the first nu elements in the file need to be read at rendering
time. This file can be created as a post-process with any model.
It works especially well in a film production environment, where
the common case is to create sets from randomly scaled and rotated
versions of a small number of pre-built plant shapes.

2.2 Area preservation

The total area of the object is na, where a is the average surface area
of the individual elements. Pruning decreases the total area to nua;
to compensate for this, the area of the unpruned elements should be
scaled by an amount sunpruned so that:

(nu)(asunpruned) = na (2)

Therefore sunpruned = 1/u. Figure 4a shows the area scaling factor s
as a function of x, the position of the element in the reverse pruning
order. s is 1/u for unpruned elements (x < u) and 0 for pruned
elements (x > u).

(a)

(b)
Figure 4: For smaller values of u, more elements are pruned (have
0 area), and the remaining elements are enlarged more. In (a), ele-
ments are pruned abruptly; in (b) the pruning is gradual.

For example, the unpruned plant in Figure 2a is noticeably less
dense when 90% of its leaves have been pruned, as shown in Fig-
ure 2b. In Figure 2c, we correct for this by making the remaining
leaves 10 times larger so that the total area of the plant remains the
same. Depending on the type of element, this can be done by scal-
ing in one or two dimensions; in this example, the leaf widths are
scaled, as shown in close-up view in Figure 2c. The widening visi-
ble in this magnified view is not noticeable in practice because the
elements are so small their shapes are not discernible.

2.3 Contrast preservation

From the central limit theorem, we know that sampling more ele-
ments per pixel decreases the pixel variance. As a result, pruning
an object (i.e., sampling fewer elements) increases its contrast (i.e.,
higher variance). For example, notice how the pruned plant in Fig-
ure 2c has a higher contrast than the unpruned plant in Figure 2a.
We now analyze this effect and show how to compensate for it.

The variance of the color of the elements is

σ
2
elem =

n

∑
i=1

(ci − c̄)2 (3)

where ci is the color of the ith element and c̄ is the mean color.
When k elements are sampled per pixel, the expected variance of

α amount of color variance reduction
σ 2 variance
a element surface area
c color
h z at which half the elements are pruned
k number of elements per pixel
n number of elements in the object
s area scaling correction factor
t size of transition region for fading out pruned elements
u fraction of elements unpruned
x position of an element in the reverse pruning order
z distance from the camera

Figure 5: Some symbols used in this paper

Figure 6: Contrast correction is more important for aggressive prun-
ing (small h). Parameters: k1 = 1, kmax = 121

the pixels is related to the variance of the elements by:

σ
2
pixel =

k

∑
i=1

(wi)2
σ

2
elem (4)

where the weight wi is the amount the ith element contributes to
the pixel. For this analysis, we can assume that each element con-
tributes equally to the pixel with weight 1/k:

σ
2
pixel =

k

∑
i=1

(
1
k
)2

σ
2
elem = k(

1
k
)2

σ
2
elem =

1
k

σ
2
elem (5)

The pixel variance when the unpruned object is rendered is:

σ
2
unpruned = σ

2
elem/kunpruned (6)

and the pixel variance when the pruned object is rendered is:

σ
2
pruned = σ

2
elem/kpruned (7)

We can make these the same by altering the colors of the pruned
elements to bring them closer to the mean:

c′i = c̄+α(ci − c̄) (8)
which reduces the variance of the elements to:

σ
′2
elem =

n

∑
i=1

(c′i − c̄)2 (9)

=
n

∑
i=1

(c̄+α(ci − c̄)− c̄)2 (10)

= α
2

n

∑
i=1

(ci − c̄)2 (11)

= α
2
σ

2
elem (12)

which in turn reduces the variance of the pixels to:

σ
′2
pruned = σ

′2
elem/kpruned (13)

= σ
2
elemα

2/kpruned (14)

= σ
2
unprunedα

2kunpruned/kpruned (15)

We want σ
′2
pruned = σ2

unpruned , which is true when

α
2 = kpruned/kunpruned (16)

An image of a pruned object with these altered element colors will
then have the same variance as an image of the unpruned object
with the original element colors.

Because screen size varies as 1/z2, we would expect kunpruned =
k1z2, where k1 is the value of k at z = 1, which we can estimate
by dividing n by the number of pixels covered by the object when
z = 1. Similarly, we would expect kpruned = ukunpruned = uk1z2, so
that α2 = u. Many renderers, however, have a maximum number of
visible objects per pixel kmax (e.g., 64 if the renderer point-samples
8x8 locations per pixel), and this complicates the formula for α:

α
2 =

min(uk1z2,kmax)
min(k1z2,kmax)

(17)

Figure 7: Ratio of rendering time and memory use with and without
pruning as a function of distance for the animation in the supple-
mentary material of the plant in Figure 1 receding into the distance.

Figure 6 shows α as a function of z for values of h. Notice that the
contrast only changes in the middle distance. When the object is
close, the contrast is unchanged because there is no pruning. When
the object is far away, the contrast is unchanged because there are
more than kmax unpruned elements per pixel, so that kmax elements
contribute to the pixel in both the pruned and unpruned cases. The
maximum contrast difference occurs at z =

√
kmax/k1. The smaller

u is at this distance, the larger this maximum will be; contrast cor-
rection is thus more important with more aggressive pruning (Fig-
ure 6). Figure 2d shows the plant in Figure 2c with contrast correc-
tion.

If there are different types of elements in a scene (e.g. leaves and
grass), each type needs its own independent contrast correction. c̄
should be based on the final shaded colors of the elements, but it
can be approximated by reducing the variance of the shader inputs.

2.4 Smooth Animation

As elements are pruned during an animation, they should gradually
fade out instead of just abruptly popping off. This can be done by
gradually making the elements either more transparent or smaller as
they are pruned. The later is shown in Figure 4b, where the size t of
the transition region is 0.1. The orange line shows that for a desired
pruning level of 70% (u = .3), the first 20% of the elements in the
reverse pruning order (x <= u− t = .2) are enlarged by 1/u = 10/3
and the last 60% (x > u+ t = .4) are completely pruned. From x=.2
to x=.4, the areas gradually decrease to 0. As we zoom in and u
increases, the elements at x = .4 are gradually enlarged, reaching
their fully-enlarged size when u = .5 (the yellow line). The area
under each line is the total pruned surface area and is constant.

3 Results and Conclusions

Figure 7 shows memory usage and rendering time for the plant in
Figure 1 as it recedes into the distance (see movie in supplemen-
tary material). Figure 8 shows a variety of plants rendered with this

Figure 8: A gallery of different pruned objects.

Figure 9: A scene renderered with pruning that was unrenderable in RenderMan without pruning.

technique. The scene in Figure 9 contains over one hundred mil-
lion leaves and requires so much memory that without pruning it is
unrenderable with RenderMan.

Stochastic pruning is an automatic, straightforward level-of-detail
method that can greatly reduce the geometric complexity of objects
with large numbers of simple, disconnected elements. This type of
complexity is not effectively addressed by previous methods. The
technique fits well into a rendering pipeline, needing no knowledge
of how the geometry was generated. It is also easy to implement:
just randomly shuffle the elements into a file and use code like that
in the Appendix to read just the unpruned elements. We have suc-
cessfully used this technique in a production environment with a
variety of models to render highly complex scenes that we found
impossible to render otherwise.

4 Acknowledgments

Omitted for anonymous review.

References

ANDUJAR, C., BRUNET, P., AND AYALA, D. 2002. Topology-
reducing surface simplifications using a discrete solid represen-
tation. ACM Transaction on Graphics 21, 2 (April), 88–105.

COHEN, J., VARSHNEY, A., MANOCHA, D., TURK, G., WE-
BER, H., AGARWAL, P., BROOKS, F., AND WRIGHT, W. 1996.
Simplification envelopes. In SIGGRAPH ’96 Proceedings, ACM
Press, New York, NY, 119–128.

COOK, R. 1986. Stochastic sampling in computer graphics. ACM
Transaction on Graphics 5, 1 (January), 51–72.

CROW, F. C. 1982. A more flexible image generation environment.
In SIGGRAPH ’82 Proceedings, 9–18.

LOUNSBERY, M., DEROSE, T., AND WARREN, J. 1997. Multires-
olution analysis for surfaces of arbitrary topological type. ACM
Transaction on Graphics 16, 1 (January), 34–73.

MITCHELL, D. 1987. Generating antialiased images at low sam-
pling densities. In SIGGRAPH ’87 Proceedings, 65–72.

PRUSINKIEWICZ, P., JAMES, M., AND MECH, R. 1994. Synthetic
topiary. In SIGGRAPH ’94 Proceedings, 351–358.

REEVES, B. 1983. Particle systems - a technique for modeling
a class of fuzzy objects. ACM Transaction on Graphics 2, 2
(April), 91–108.

SMITH, A. 1984. Plants, fractals, and formal languages. In SIG-
GRAPH ’84 Proceedings, 1–10.

WILSON, A., AND MANOCHA, D. 2003. Simplifying complex
environments using incremental textured depth meshes. In SIG-
GRAPH ’03 Proceedings, 678–688.

Appendix. Sample code

// This code was written as a compact example, not for speed or generality.

// For example, these are in-memory routines, but in practice the elements

// would be streamed in from a file.

// The "Prune" routine takes an array "eIn" of elements in reverse pruning order

// at distance "z", and returns a pruned array of elements "eOut" to be rendered.

// These graphs illustrate how s and t change near u=0 and u=1:

//

// (when u-trans<0) (when u+trans>1)

// sMax-> s ...sss <- sMax ...sss <- sMax

// |s s . s

// | s s . s

// | s<t> or s<- t -> or .<-t->s <- sMin

// | s . s . |

// | s . s . |

// sMin=0-> +-----s- x ---+------sss... -----+-----+ x

// 0 u u u 1

Prune(element *eIn, element *eOut, double z, double k1, int nIn, int *nOut) {

double h=3, kmax=121, k=k1*z*z;

double u = (z<=1) ? 1 : pow(z,-log(2,h));

double trans = 0.1; // halfsize of transition region

double t = (u-trans<0) ? u : (u+trans>1) 1-u : trans; // t is trans adjusted for the ends

double sMax = (u+trans<1) ? 1/u : 1/(1-t*t/trans); // max area scaling for this u

double sMin = (u + trans < 1) ? 0 : sMax*(1.0-t/trans); // min area scaling for this u

*nOut = (u+t) * nIn; // # unpruned, including transition

for (i=0; i<*nOut; i++) {

double x = (i+0.5)/nIn; // position in pruning order

double sLerp = (x<u-t) ? 1 : (x<u+t) ? (u+t-x)/(2*t) : 0;

double s = sMin + (sMax-sMin) sLerp; // area scaling for this element

double alpha = sqrt(min(kmax,k*u)/min(kmax,k)); // contrast correction

eOut[i] = eIn[i];

eOut[i]->scaleAreaBy(s); // scales area of element

eOut[i]->scaleContrastBy(alpha); // scales contrast of element

}

}

